\qquad
\qquad
\qquad

Lesson 4 Applying GCF and LCM to Fraction Operations Practice and Problem Solving: A/B

Multiply. Use the greatest common factor to write each answer in simplest form.

1. $\frac{2}{3} \cdot \frac{6}{7}$
2. $\frac{3}{4} \cdot \frac{2}{3}$
3. $\frac{8}{21} \cdot \frac{7}{10}$
4. $24 \cdot \frac{5}{6}$
5. $32 \cdot \frac{3}{8}$
6. $21 \cdot \frac{3}{7}$

Add or subtract. Use the least common multiple as the denominator.
7. $\frac{4}{15}+\frac{5}{6}$
8. $\frac{5}{12}-\frac{3}{20}$
9. $\frac{3}{5}+\frac{3}{20}$
10. $\frac{5}{8}-\frac{5}{24}$
11. $3 \frac{5}{12}+1 \frac{3}{8}$
12. $2 \frac{9}{10}-1 \frac{7}{18}$

Solve.
13. Louis spent 12 hours last week practicing guitar. If $\frac{1}{4}$ of the time was spent practicing chords, how much time did Louis spend practicing chords?
14. Angie and her friends ate $\frac{3}{4}$ of a pizza. Her brother Joe ate $\frac{2}{3}$ of what was left. How much of the original pizza did Joe eat?
\qquad
\qquad
\qquad

LEsson 4 Applying GCF and LCM to Fraction Operations
 Practice and Problem Solving: C

Multiply. Use the greatest common factor to write each answer in simplest form.

1. $\frac{4}{9} \cdot \frac{3}{8}$
2. $\frac{7}{9} \cdot \frac{3}{14}$
3. $18 \cdot \frac{7}{9}$

Add or subtract. Use the least common multiple as the denominator.
4. $\frac{7}{15}+\frac{5}{6}$
5. $1 \frac{7}{12}-\frac{3}{20}$
6. $\frac{2}{5}+\frac{7}{20}$

Solve.
7. A recipe calls for the following ingredients.

3 c flour \qquad $\frac{1}{2} \mathrm{t}$ salt
$\frac{3}{4}$ c sugar \qquad 4 c fruit \qquad
2 T butter \qquad
To make $\frac{2}{3}$ of the recipe, how much of each ingredient should you use? Write the revised amount on the line next to each ingredient.
8. Half of a pizza was broccoli and half was mushroom. George ate $\frac{2}{3}$ of the broccoli part and $\frac{1}{4}$ of the mushroom part. How much of the pizza did he eat?
\qquad
9. What else could you call the least common multiple in an addition or subtraction problem involving fractions?
\qquad
\qquad
\qquad
\qquad

Lesson Applying GCF and LCM to Fraction Operations
 Practice and Problem Solving: D

Multiply. Use the greatest common factor to write each answer in simplest form. The first one is done for you.

1. $\frac{2}{3} \cdot \frac{3}{4}$
2. $\frac{12}{15} \cdot \frac{3}{4}$
3. $24 \cdot \frac{5}{8}$

$$
\frac{2}{3} \cdot \frac{3}{4}=\frac{6}{12}=\frac{1}{2}
$$

Add or subtract. Use the least common multiple as the denominator.
The first one is done for you.
4. $\frac{11}{12}-\frac{3}{20}$
5. $\frac{3}{5}+\frac{9}{20}$
6. $\frac{11}{15}+\frac{2}{3}$

Solve. The first one is done for you.
7. Lyza used 24 ounces of spaghetti to make a recipe. If she wanted to make $\frac{1}{4}$ as much, how much spaghetti should she use?

$$
\frac{1}{4} \cdot 24=6 ; 6 \text { ounces }
$$

8. Noah spent 25 hours working on his car. He spent $\frac{4}{5}$ of his time working on the transmission. How much time did Noah spend working on the transmission?
9. Miguel made lemonade. He mixed $\frac{1}{3}$ cup of lemon juice with $\frac{4}{9}$ cup of water. How much more water than lemon juice did Miguel use?
\qquad Date \qquad
\qquad

LEsson 4 Applying GCF and LCM to Fraction Operations

 ReteachHow to Multiply a Fraction by a Fraction

$$
\frac{2}{3} \cdot \frac{3}{8}
$$

$$
\frac{2}{3} \cdot \frac{3}{8}=\frac{6}{} \quad \text { Multiply numerators. }
$$

$$
\frac{2}{3} \cdot \frac{3}{8}=\frac{6}{24} \quad \text { Multiply denominators }
$$

$$
\frac{6 \div 6}{24 \div 6}=\frac{1}{4} \quad \text { Divide by the greatest common factor (GCF). }
$$

The GCF of 6 and 24 is 6 .
How to Add or Subtract Fractions

$$
\frac{5}{6}+\frac{11}{15}
$$

$$
\frac{25}{30}+\frac{22}{30} \quad \text { Rewrite over the least common multiple (LCM). }
$$

$$
\frac{25}{30}+\frac{22}{30}=\frac{47}{30} \quad \text { Add the numerators. }
$$

$$
=1 \frac{17}{30} \quad \text { If the sum is an improper fraction, rewrite }
$$

it as a mixed number.

Multiply. Use the greatest common factor.

1. $\frac{3}{4} \cdot \frac{7}{9}$
2. $\frac{2}{7} \cdot \frac{7}{9}$
3. $\frac{7}{11} \cdot \frac{22}{28}$
4. $8 \cdot \frac{3}{10}$
5. $\frac{4}{9} \cdot \frac{3}{4}$
6. $\frac{3}{7} \cdot \frac{2}{3}$

Add or subtract. Use the least common multiple.
7. $\frac{7}{9}+\frac{5}{12}$
8. $\frac{21}{24}-\frac{3}{8}$
9. $\frac{11}{15}+\frac{7}{12}$
\qquad
\qquad
\qquad

Lesson Applying GCF and LCM to Fraction Operations Reading Strategies: Use Graphic Aids

You can find the answer to $6 \cdot \frac{2}{3}$ using fraction strips and multiplication.
$6 \cdot \frac{2}{3}=\frac{12}{3}$

1. What fractional part of each fraction strip is shaded? \qquad
2. How many of these fraction strips are there? \qquad
3. Write a multiplication equation for this picture. \qquad
You can use fraction strips to find the least common multiple.

$$
\frac{3}{4}+\frac{1}{3}
$$

| $\frac{3}{4}+\frac{1}{3}=\frac{9}{12}+\frac{4}{12}$ | \square |
| :---: | :---: | :---: |

So, $\frac{3}{4}+\frac{1}{3}=\frac{13}{12}=1 \frac{1}{12}$.

Find the products. Use the greatest common factor. Write each answer in simplest form.
4. $6 \cdot \frac{1}{9}$
5. $3 \cdot \frac{5}{9}$
6. $2 \cdot \frac{11}{14}$

Find the sums. Use the least common multiple. Write each answer in simplest form.
7. $\frac{1}{4}+\frac{5}{12}$
8. $\frac{2}{9}+\frac{7}{12}$
9. $\frac{9}{10}+\frac{1}{4}$
\qquad Date \qquad Class \qquad

LESSON 4-1
 Applying GCF and LCM to Fraction Operations

Success for English Learners

Problem 1

$$
\frac{3}{1} \cdot \frac{1}{9}=\frac{3}{9}
$$

Problem 2

$\frac{2}{4}+\frac{2}{3}$

$+$

2 of 3 parts
2 of 4 parts
THINK:
What is the LCM of 4 and 3 ?
$\frac{2}{4}+\frac{2}{3}=\frac{6}{12}+\frac{8}{12}=\frac{14}{12}$

$+$

$\frac{2}{4}+\frac{2}{3}=\frac{14}{12}=\frac{7}{6}$

1. Compare the steps you do to multiply fractions with the steps you do to add fractions.
\qquad
\qquad
\qquad
2. How do the greatest common factor and the least common multiple help you when multiplying and adding or subtracting fractions?
\qquad
\qquad
\qquad
\qquad
\qquad

Lesson Dividing Fractions

Practice and Problem Solving: A/B

Find the reciprocal.

1. $\frac{5}{7}$ \qquad 2. $\frac{3}{4}$
2. $\frac{3}{5}$ \qquad
3. $\frac{1}{10}$
4. $\frac{4}{9}$
5. $\frac{13}{14}$
6. $\frac{7}{12}$ \qquad 8. $\frac{3}{10}$
7. $\frac{5}{8}$

Divide. Write each answer in simplest form.
10. $\frac{5}{6} \div \frac{1}{2}$ \qquad 11. $\frac{7}{8} \div \frac{2}{3}$
12. $\frac{9}{10} \div \frac{3}{4}$
13. $\frac{3}{4} \div 9$ \qquad 14. $\frac{6}{9} \div \frac{6}{7}$
15. $\frac{5}{6} \div \frac{3}{10}$
16. $\frac{5}{6} \div \frac{3}{4}$ \qquad 17. $\frac{5}{8} \div \frac{3}{5}$
18. $\frac{21}{32} \div \frac{7}{8}$
\qquad
\qquad

Solve.

19. Mrs. Marks has $\frac{3}{4}$ pound of cheese to use making sandwiches.

She uses about $\frac{1}{32}$ pound of cheese on each sandwich. How many sandwiches can she make with the cheese she has?
20. In England, mass is measured in units called stones. One pound equals $\frac{1}{14}$ of a stone. A cat weighs $\frac{3}{4}$ stone. How many pounds does the cat weigh?
\qquad
21. Typographers measure font sizes in units called points. One point is equal to $\frac{1}{72}$ inch. Esmeralda is typing a research paper on her computer. She wants the text on the title page to be $\frac{1}{2}$ inch tall. What font size should she use?
\qquad
\qquad
\qquad

Lesson Dividing Fractions

Practice and Problem Solving: C

Find the reciprocal. Tell whether it is greater or less than 1.

1. $\frac{3}{7}$
2. $\frac{3}{4}$
3. $\frac{8}{5}$
4. $\frac{1}{11}$
5. $\frac{8}{9}$
6. $\frac{13}{4}$
7. If a fraction is less than 1 , what do you know about its reciprocal?
8. If a fraction is greater than 1 , what do you know about its reciprocal?
9. What is the product of a number and its reciprocal? \qquad
Divide. Write each answer in simplest form.
10. $\frac{5}{6} \div \frac{2}{3}$
11. $\frac{7}{8} \div \frac{3}{5}$
12. $\frac{8}{9} \div \frac{2}{5}$
13. $\frac{2}{3} \div \frac{4}{5}$ \qquad 14. $\frac{5}{7} \div \frac{7}{9}$
14. $\frac{3}{5} \div \frac{9}{11}$

Answer each question.

16. In problems $10-12$, the dividend is greater than the divisor. What do you know about the quotients?
\qquad
17. In questions 13-15, the divisor is greater than the dividend. What do you know about the quotients?
\qquad
18. Jonathan has $1 \frac{3}{4}$ hours to practice guitar. If he spends $\frac{1}{8}$ hour on each song, how many songs can Jonathan practice? For how many minutes does he practice each song?
\qquad
\qquad
\qquad
\qquad

Dividing Fractions

Practice and Problem Solving: D

Find the reciprocal. The first one is done for you.

1. $\frac{2}{3} \xrightarrow{\frac{3}{2}}$
2. $\frac{7}{9}$
3. $\frac{8}{5}$
4. $\frac{9}{10}$
5. $\frac{3}{10}$
6. $\frac{8}{1}$
7. $\frac{6}{7}$ \qquad
\qquad
\qquad
8. $\frac{1}{9}$

\qquad
\qquad
9. $\frac{4}{7}$ \qquad
\longrightarrow
\qquad

Divide. Write each answer in simplest form. The first one is done for you.
11. $\frac{7}{10} \div \frac{2}{3}$
12. $\frac{5}{6} \div \frac{3}{4}$
10. $\frac{3}{4} \div \frac{1}{2}$

$$
\frac{3}{4} \cdot \frac{2}{1}=\frac{6}{4}=1 \frac{1}{2}
$$

13. $\frac{3}{10} \div \frac{5}{6}$
14. $\frac{5}{9} \div \frac{5}{7}$
15. $\frac{7}{10} \div \frac{5}{6}$
16. $\frac{7}{8} \div \frac{3}{4}$
17. $\frac{11}{12} \div \frac{2}{3}$
18. $\frac{5}{7} \div \frac{10}{13}$

Solve. The first one has been started for you.
19. Each package of dried fruit contains $\frac{3}{16}$ of a pound. Mr. Lopez has 4 pounds of dried fruit. How many packages can he fill?

$$
4 \div \frac{3}{16}=4 \cdot \quad=\frac{}{3}=
$$

\qquad
\qquad packages
20. One inch is $\frac{1}{12}$ of a foot. Eunice has a puppy that is $\frac{3}{4}$ of a foot tall. How many inches tall is her puppy?
21. One minute is $\frac{1}{60}$ of an hour. What part of an hour is 12 minutes?
\qquad Date \qquad
\qquad

LEsson $4-2$ Dividing Fractions

 ReteachTwo numbers are reciprocals if their product is 1 .

$$
\frac{2}{3} \text { and } \frac{3}{2} \text { are reciprocals because } \frac{2}{3} \cdot \frac{3}{2}=\frac{6}{6}=1 \text {. }
$$

Dividing by a number is the same as multiplying by its reciprocal.

$$
\frac{1}{4} \div \frac{1}{2}=\frac{1}{2} \quad \longrightarrow \quad \frac{1}{4} \cdot \frac{2}{1}=\frac{1}{2}
$$

So, you can use reciprocals to divide by fractions.
Find $\frac{2}{3} \div \frac{1}{4}$.
First, rewrite the expression as a multiplication expression.
Use the reciprocal of the divisor: $\frac{1}{4} \cdot \frac{4}{1}=1$.

$$
\begin{aligned}
\frac{2}{3} \div \frac{1}{4} & =\frac{2}{3} \cdot \frac{4}{1} \\
& =\frac{8}{3} \\
& =2 \frac{2}{3}
\end{aligned}
$$

Think: 6 thirds is 2 , and 2 of the 8 thirds are left over.

Rewrite each division expression as a multiplication expression. Then find the value of the expression. Write each answer in simplest form.

1. $\frac{1}{4} \div \frac{1}{3}$
2. $\frac{1}{2} \div \frac{1}{4}$
3. $\frac{3}{8} \div \frac{1}{2}$
4. $\frac{1}{3} \div \frac{3}{4}$

Divide. Write each answer in simplest form.
5. $\frac{1}{5} \div \frac{1}{2}$
6. $\frac{1}{6} \div \frac{2}{3}$
7. $\frac{1}{8} \div \frac{2}{5}$
8. $\frac{1}{8} \div \frac{1}{2}$
\qquad
\qquad
\qquad

Reading Strategies: Use Models

Bar models can help you picture dividing by fractions.

What is $\frac{7}{8} \div \frac{1}{4}$? Think: How many one-fourths are in $\frac{7}{8}$?

Use the picture to answer each question.

1. How many whole groups of $\frac{1}{4}$ are in $\frac{7}{8}$? \qquad
What fraction of a group of $\frac{1}{4}$ is left? \qquad
2. $\frac{7}{8} \div \frac{1}{4}=$ \qquad
Instead of dividing, multiply by the reciprocal. Think: $\frac{7}{8}$ four times.

Use the picture to answer each question.

3. How many whole bars are shaded? \qquad
4. How many additional eighths of a bar are shaded? \qquad
What is this fraction in simplest form? \qquad
5. All together, how many bars are shaded? \qquad
6. Compare the multiplication and division examples. What do you notice about the answer you get when you divide by $\frac{1}{4}$ or multiply by 4 ?
\qquad
\qquad
\qquad

Lesson Dividing Fractions

Success for English Learners

Problem 2

1. How do you find the reciprocal of a fraction?
\qquad
\qquad
2. Explain the steps you follow to divide $\frac{5}{8}$ by $\frac{1}{3}$.
\qquad
\qquad
3. You multiply any fraction times its reciprocal. What is the product?

Give an example.
\qquad
\qquad
\qquad
\qquad
\qquad

LESSON

4-3

Dividing Mixed Numbers

Practice and Problem Solving: A/B

Find the reciprocal. Show that the product of the mixed number and its reciprocal is 1.

1. $10 \frac{1}{2}$
2. $6 \frac{3}{7}$
3. $2 \frac{8}{9}$
4. $15 \frac{1}{4}$
5. $9 \frac{2}{3}$
6. $7 \frac{5}{8}$

Divide. Write each answer in simplest form.
7. $\frac{8}{10} \div 1 \frac{5}{6}$
8. $2 \div 1 \frac{6}{7}$
9. $3 \frac{3}{5} \div 2 \frac{1}{4}$
10. $4 \frac{1}{2} \div 2 \frac{3}{8}$
11. $5 \frac{5}{6} \div 3 \frac{1}{6}$
12. $\frac{11}{12} \div 2 \frac{5}{8}$
13. $1 \frac{9}{13} \div \frac{3}{8}$
14. $6 \frac{4}{5} \div 3 \frac{2}{9}$
15. $9 \frac{2}{3} \div 6 \frac{8}{9}$

Write each situation as a division problem. Then solve.
16. A concrete patio is $5 \frac{2}{3}$ feet wide. It has an area of $36 \frac{5}{6}$ square feet. Is the concrete slab long enough to fit a 7 -foot picnic table without placing the table along the diagonal of the patio? Explain.
17. The area of a mirror is 225 square inches, and its width is $13 \frac{3}{4}$ inches. Will the mirror fit in a space that is 15 inches by 16 inches? Explain.
18. Barney has $16 \frac{1}{5}$ yards of fabric. To make an elf costume, he needs $5 \frac{2}{5}$ yards of fabric. How many costumes can Barney make?
\qquad
\qquad
\qquad

LEsSon 4-3 Dividing Mixed Numbers

Practice and Problem Solving: C

Solve.

1. Vanessa buys a strip of 25 postage stamps. The strip of stamps is $21 \frac{7}{8}$ inches long. How long is a strip after Vanessa uses 1 stamp?
2. Hasan has $18 \frac{3}{4}$ yards of fabric. It takes $3 \frac{1}{6}$ yards to make a pillowcase. Hasan plans to make as many pillowcases as he can. How many yards of fabric will be left over?
3. Takafumi is hiking on a path that is $5 \frac{7}{8}$ miles long. There are 6 markers evenly posted along the path. Takafumi arrives at the $4^{\text {th }}$ marker. How many miles has he hiked so far?
4. Yuki has a ribbon that is $11 \frac{1}{4}$ feet long. She divides it into pieces that are each $1 \frac{7}{8}$ feet long. She uses three pieces to make a bow. How many bows can she make in all?
5. Mrs. Lemke has $10 \frac{2}{3}$ ounces of fertilizer for her plants. She plans to use $\frac{3}{4}$ ounce of fertilizer on each plant. After she puts fertilizer on as many plants as she can, how much fertilizer will be left over?
6. Gabriel has $15 \frac{5}{8}$ pounds of clay. He will use $\frac{7}{10}$ pound to make each bowl. After making 8 bowls, Gabriel wonders how many more bowls he can make. How many more bowls can he make? Explain how you know.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

LESSON
 4-3

Dividing Mixed Numbers

Practice and Problem Solving: D

Show how to write each mixed number as an improper fraction. Then find the reciprocal. The first one is done for you.

1. $9 \frac{1}{2}$
2. $5 \frac{3}{7}$
3. $1 \frac{8}{9}$

$$
\frac{(9 \times 2)+1}{2}=\frac{19}{2}
$$

The reciprocal is $\frac{2}{19}$.
4. $14 \frac{1}{4}$
5. $8 \frac{2}{3}$
6. $6 \frac{5}{8}$

Divide. Write each answer in simplest form. The first one is done for you.
7. $\frac{7}{10} \div 1 \frac{2}{6}$
8. $2 \div 1 \frac{5}{7}$

$$
\frac{7}{10} \div \frac{8}{6}=\frac{7}{10} \times \frac{6}{8}=\frac{42}{80}=\frac{21}{40}
$$

9. $4 \frac{3}{5} \div 2 \frac{2}{5}$
10. $\frac{11}{12} \div 1 \frac{3}{4}$
\qquad

Write a division expression for each problem. Then solve. The first one is done for you.
11. Larry has $9 \frac{3}{5}$ yards of fabric. He will use $2 \frac{2}{5}$ yards to make each vest. How many vests can Larry make?

$$
9 \frac{3}{5} \div 2 \frac{2}{5}=\frac{48}{5} \div \frac{12}{5}=\frac{48}{5} \times \frac{5}{12}=\frac{48}{12}=4
$$ Larry can make \qquad 4 vests.

12. A patio has an area of $20 \frac{5}{6} \mathrm{ft}^{2}$, and the width is $3 \frac{1}{2}$ feet. What is the length of the patio?
\qquad The patio is \qquad feet long.
\qquad Date \qquad
\qquad

$\underset{4-3}{\text { LEsson }}$ Dividing Mixed Numbers

Reteach

Two numbers are reciprocals if their product is 1 .

$$
\frac{7}{3} \text { and } \frac{3}{7} \text { are reciprocals because } \frac{7}{3} \times \frac{3}{7}=1 .
$$

Write a mixed number as an improper fraction to find its reciprocal.
$2 \frac{3}{4}$ and $\frac{4}{11}$ are reciprocals because $2 \frac{3}{4}=\frac{11}{4}$ and $\frac{11}{4} \times \frac{4}{11}=1$.
To find $2 \frac{3}{4} \div 1 \frac{3}{4}$, first rewrite the mixed numbers as improper fractions.

$$
\frac{11}{4} \div \frac{7}{4}
$$

Next, rewrite the expression as a multiplication expression and replace the divisor with its reciprocal.

$$
\frac{11}{4} \times \frac{4}{7}
$$

Solve. Write your answer in simplest form.

$$
2 \frac{3}{4} \div 1 \frac{3}{4}=\frac{11}{4} \div \frac{7}{4}=\frac{11}{4} \times \frac{4}{7}=\frac{11}{7}=1 \frac{4}{7}
$$

Find the reciprocal.

1. $\frac{9}{14}$
2. $3 \frac{1}{2}$
3. $10 \frac{2}{3}$

Complete the division. Write each answer in simplest form.

4. $3 \frac{3}{5} \div 2 \frac{1}{4}$
5. $1 \frac{1}{2} \div 1 \frac{1}{4}$
6. $\frac{5}{12} \div 1 \frac{7}{8}$
$=\frac{18}{5} \div \frac{}{4}$
$=\frac{3}{2} \div \frac{}{4}$
$=\frac{}{12} \div \frac{}{8}$
$=\frac{}{5} \times \frac{}{9}$
$=-\times-$
$=-\times \longrightarrow$
7. $3 \frac{1}{8} \div \frac{1}{2}$
8. $1 \frac{1}{6} \div 2 \frac{2}{3}$
9. $2 \div 1 \frac{1}{5}$
\qquad
\qquad
\qquad

Reading Strategies: Use a Model

A model is useful for dividing mixed numbers.
The Smith family has a $2 \frac{1}{2}$-foot-long sandwich to share. Each $\frac{1}{2}$-foot of the sandwich serves one person. How many $\frac{1}{2}$-foot servings are in this sandwich?
Find $2 \frac{1}{2} \div \frac{1}{2}$.
Step 1: Draw a square and label it $\frac{1}{2}$.
$\frac{1}{2}$

Step 2: Draw a row of these squares until they add up to $2 \frac{1}{2}$.

$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$

Step 3: Count the number of squares needed to reach $2 \frac{1}{2}$.

1. How do you represent a single serving?
2. Why draw a row of servings until they add up to $2 \frac{1}{2}$?
3. How many $\frac{1}{2}$-foot servings does the Smith family have?
4. What is $2 \frac{1}{2} \div \frac{1}{2}$? \qquad
\qquad
\qquad
\qquad

$\underset{4-3}{\text { LEsSoN }}$ Dividing Mixed Numbers

Success for English Learners

Problem 1

What is the reciprocal of $2 \frac{3}{4}$?
Write the mixed number as an improper fraction.

$$
\begin{aligned}
2 \frac{3}{4} & =2+\frac{3}{4} \\
& =\frac{8}{4}+\frac{3}{4} \\
& =\frac{11}{4}
\end{aligned}
$$

What is the reciprocal of $\frac{11}{4}$?
Flip it!

How can I tell this is right?

Problem 2

How wide is the rectangle?

$A=56 \frac{2}{3} \mathrm{ft}^{2}$
What is the area?
What is the length?
How can I find the width?

Divide the area by the length.

$$
\begin{aligned}
56 \frac{2}{3} \div 8 \frac{1}{2} & =\frac{170}{3} \div \frac{17}{2} \\
& =\frac{170}{3} \times \frac{2}{17} \\
& =\frac{10}{3 \times 170} \\
& =\frac{20}{3} \text { or } 6 \frac{2}{3}
\end{aligned}
$$

The width is $6 \frac{2}{3} \mathrm{ft}$.

1. How is dividing mixed numbers different from multiplying mixed numbers?
\qquad
\qquad
2. What is the first step to divide mixed numbers?
\qquad
3. Why would you expect the width of the rectangle to be about 7 ft ?
